Scientific Understanding of Consciousness
Consciousness as an Emergent Property of Thalamocortical Activity

Attentional Control



PLoS Biology, 27 Dec 2011

Kaping D, Vinck M, Hutchison RM, Everling S, Womelsdorf T (2011)

Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation

PLoS Biol 9(12): e1001224. doi:10.1371/journal.pbio.1001224, 27 Dec 2011

1 Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada,

2 Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada,

3 Cognitive and Systems Neuroscience Group, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands,

4 Robarts Research Institute, London, Ontario, Canada


Attentional control ensures that neuronal processes prioritize the most relevant stimulus in a given environment. Controlling which stimulus is attended thus originates from neurons encoding the relevance of stimuli, i.e. their expected value, in hand with neurons encoding contextual information about stimulus locations, features, and rules that guide the conditional allocation of attention. Here, we examined how these distinct processes are encoded and integrated in macaque prefrontal cortex (PFC) by mapping their functional topographies at the time of attentional stimulus selection. We find confined clusters of neurons in ventromedial PFC (vmPFC) that predominantly convey stimulus valuation information during attention shifts. These valuation signals were topographically largely separated from neurons predicting the stimulus location to which attention covertly shifted, and which were evident across the complete medial-to-lateral extent of the PFC, encompassing anterior cingulate cortex (ACC), and lateral PFC (LPFC). LPFC responses showed particularly early-onset selectivity and primarily facilitated attention shifts to contralateral targets. Spatial selectivity within ACC was delayed and heterogeneous, with similar proportions of facilitated and suppressed responses during contralateral attention shifts. The integration of spatial and valuation signals about attentional target stimuli was observed in a confined cluster of neurons at the intersection of vmPFC, ACC, and LPFC. These results suggest that valuation processes reflecting stimulus-specific outcome predictions are recruited during covert attentional control. Value predictions and the spatial identification of attentional targets were conveyed by largely separate neuronal populations, but were integrated locally at the intersection of three major prefrontal areas, which may constitute a functional hub within the larger attentional control network.

To navigate within an environment filled with sensory stimuli, the brain must selectively process only the most relevant sensory information. Identifying and shifting attention to the most relevant sensory stimulus requires integrating information about its sensory features as well as its relative value, that is, whether it's worth noticing. In this study, we describe groups of neurons in the monkey prefrontal cortex that convey signals relating to the value of a stimulus and its defining feature and location at the very moment when attention is shifted to the stimulus. We found that signals conveying information about value were clustered in a ventromedial prefrontal region, and were separated from sensory signals within the anterior cingulate cortex and the lateral prefrontal cortex. The integration of valuation and other “top-down” processes, however, was achieved by neurons clustered at the intersection of ventromedial, anterior cingulate, and lateral prefrontal cortex. We conclude that valuation processes are recruited when attention is shifted, independent of any overt behavior. Moreover, our analysis suggests that valuation processes can bias the initiation of attention shifts, as well as ensure sustained attentional focusing.

[end of paraphrase]